Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ray J. Butcher,* Yilma Gultneh and A. Raza Khan

Department of Chemistry, Howard University, Washington, DC 20059, USA

Correspondence e-mail:
butcher@harker.nrl.navy.mil

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in solvent or counterion
R factor $=0.055$
$w R$ factor $=0.156$
Data-to-parameter ratio $=9.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(2-pyridylmethyl)ammonium perchlorate

The title compound, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{ClO}_{4}{ }^{-}$, crystallizes from a solution of bis(2-pyridylmethyl)amine and HClO_{4} in water/ DMF (3:1, v/v) with the secondary amine N atom protonated. The two pyridine arms of the ligand are held in a closed conformation through a strong bifurcated hydrogen bond from one of the ammonium H atoms. The $\mathrm{ClO}_{4}{ }^{-}$anion is also hydrogen bonded to the same H atom of the ammonium N atom, with an N$\cdots \mathrm{O}$ distance of 2.899 (4) \AA. The other ammonium H atom is hydrogen bonded to an O atom of a symmetry-related perchlorate anion.

Comment

Bis(2-pyridylmethyl)amine has been used as chelating ligand for several metal ions, as a single unit, or as two or more units bridged by other groups through the amine N atom (Gultneh et al., 1999; Palaniandavar et al., 1995). We report here the structure of the perchlorate salt, (I), of the protonated compound. Because the $\mathrm{p} K_{a}$ of the amine N atom (determined to be 7.3) is much higher than those of the pyridyl groups ($\mathrm{p} K_{a}$ of 2.26 and 1.12) (Romary et al., 1967), the amine N atom is protonated, while the pyridyl N atoms are hydrogen bonded at longer distances. The $\mathrm{N}-\mathrm{H}$ bond lengths were constrained to be $0.90 \AA$, with tetrahedral angles about the central amine N atom. The $\mathrm{N}_{\text {pyridyl }} \cdots \mathrm{H}$ distances are far longer [$\mathrm{N} 1 A \cdots \mathrm{H} 1 \mathrm{~N}$ 2.53 (1) and $\mathrm{N} 1 A \cdots \mathrm{H} 2 \mathrm{~N} 2.52$ (1) \AA; N1B $\cdots \mathrm{H} 1 \mathrm{~N} 2.48$ (1) and $\mathrm{N} 1 B \cdots \mathrm{H} 2 \mathrm{~N} 2.56(1) \AA$ A. Based on $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angles, atom H1N forms a hydrogen bond with $\mathrm{N} 1 B\left[129(1)^{\circ}\right]$ and H2N with $\mathrm{N} 1 A\left[125(1)^{\circ}\right]$. The perchlorate ion O atoms are involved in hydrogen bonds with the amine H atoms, with variable $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ perchlorate angles ranging from $130(1)$ to $159(1)^{\circ}$. The amine-pyridine $\mathrm{N} \cdots \mathrm{N}$ distances are 2.657 (3) and 2.649 (3) \AA, while the intramolecular pyridine-pyridine $\mathrm{N} \cdots \mathrm{N}$ distance is 4.511 (3) \AA. The average $\mathrm{N}_{\text {amine }}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridyl }}$ angle is $127(15)^{\circ}$.

Experimental

The title compound was synthesized by the reaction, at ice temperature, of 2-picolyl chloride and 2-(aminomethyl)pyridine in basic aqueous solution by a literature method (Romary et al., 1967)

Received 24 June 2002 Accepted 12 July 2002 Online 19 July 2002
and was purified by vacuum distillation. On dissolving the yellow oil in DMF/ $\mathrm{H}_{2} \mathrm{O}(3 / 1)$ and adding aqueous HClO_{4}, the perchlorate salt of the monoprotonated compound crystallized out as clear yellow crystals.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{ClO}_{4}^{-}$
$M_{r}=299.71$
Orthorhombic, Pbca
$a=11.3201$ (18) А
$b=14.422$ (2) A
$c=17.073(3) \AA$
$V=2787.3(7) \AA^{3}$
$Z=8$
$D_{x}=1.428 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 26
reflections
$\theta=11.6-13.0^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, pale yellow
$0.84 \times 0.56 \times 0.10 \mathrm{~mm}$

Data collection

Siemens $P 4 \mathrm{~S}$ diffractometer
$2 \theta / \omega$ scans
Absorption correction: refdelf
(SHELXTL; Sheldrick, 1997)
$T_{\text {min }}=0.728, T_{\text {max }}=0.971$
2448 measured reflections
2448 independent reflections
1676 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.156$
$S=1.03$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& h=-13 \rightarrow 0 \\
& k=-17 \rightarrow 0 \\
& l=-20 \rightarrow 0 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: } 1.0 \%
\end{aligned}
$$

2448 reflections
250 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.065 P)^{2}\right. \\
& +2.101 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N-H1N \cdots O3C				
N-H1N \cdots O2B	0.90	2.18	$3.015(17)$	154
N-H1N	0.90	2.10	$2.789(10)$	132
N-H3A	0.90	2.07	$2.869(7)$	147
N-H2N \cdots O1C	0.90	2.11	$2.953(18)$	155
N-H2N \cdots O1D	0.90	2.10	$2.958(19)$	159
N-H2N \cdots O2A	0.90	2.11	$2.875(9)$	143
N-H2N \cdots O1B	0.90	2.43	$3.095(13)$	130

Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y, z$.
Molecule (I) crystallized in the orthorhombic system; space group Pbca was assumed from the systematic absences. H atoms were treated as riding atoms $(\mathrm{C}-\mathrm{H} 0.93$ and $0.97 \AA ; \mathrm{N}-\mathrm{H} 0.9 \AA)$. The disordered perchlorate anion was modeled with four sets of four O atoms, each set restrained to tetrahedral geometry, and with the sum of their occupancies ($0.471,0.287,0.145$ and 0.097 , respectively) constrained to be equal to one.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $\operatorname{SHELXTL}$; program(s) used to refine

Figure 1
View of the ion pair of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are represented by circles of arbitrary size.

Figure 2
The molecular packing of (I), viewed along the a axis.
structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

RJB acknowledges the DoD for funds to upgrade the diffractometer. YG ackowledges the NIH-MBRS program for funding.

References

Gultneh, Y., Khan, A. R., Blaize, D., Chaudhry, S., Ahvazi, B., Marvey, B. B. \& Butcher, R. J. (1999). J. Inorg. Biochem. 75, 7-18.
Palaniandavar, M., Pandiyan, T., Lakshiminarayanan, M. \& Manohar, H. J. (1995). J. Chem. Soc. Dalton Trans. pp. 455-461.

Romary, J. K., Bunds, J. E. \& Barger, J. D. (1967). J. Chem. Eng. Data, 12, $224-$ 226.

Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

